材料科学与工程是研究材料的结构、性能、制备、加工及应用的综合性学科,涵盖金属、陶瓷、高分子、复合材料等。通过调控材料成分与微观结构,优化其力学、电学、热学等性能,满足航空航天、电子信息、生物医疗等领域需求。结合物理、化学、工程等理论,推动新材料研发与技术创新,促进可持续发展。该学科注重基础研究与工程实践结合,是高新技术发展的核心支撑。(该学科下共有 370 篇文章)
作者: aeks | 发布时间: 2025-10-11 19:07
学科: 化学工程与技术 材料科学与工程 核科学与技术 环境科学与工程
本文利用129Xe和83Kr核磁共振技术,研究了八种金属有机框架材料(MOFs)对氙气和氪气的吸附行为。研究表明,多数MOFs在γ辐射下保持稳定,且氙气吸附能增强材料稳定性。研究为核废料处理中惰性气体分离提供了分子层面的设计依据。
标签: 惰性气体吸附 核磁共振 金属有机框架
作者: aeks | 发布时间: 2025-10-11 17:27
学科: 光学工程 化学 材料科学与工程 计算机科学与技术
本文介绍了一种基于数字孪生技术的新型方法,用于实现对辐射敏感有机样品的三维光谱成像。该方法显著减少了X射线拉曼成像所需时间,同时避免样品损伤,为生物、化学和材料科学中的脆弱样品研究开辟了新途径。
标签: X射线拉曼成像 三维化学成像 光谱优化 数字孪生 辐射敏感样品
学科: 化学工程与技术 智能科学与技术 材料科学与工程 生物医学工程
本研究开发了一种通过按需交联实现水凝胶韧性和刚度时空调控的新方法。利用嵌入的碳酸钙微粒和生物相容性酸化剂,可精确控制钙离子释放,实现三维水凝胶力学性能的定制化设计。
标签: 3D打印 力学调控 水凝胶
学科: 动力工程及工程热物理 化学工程与技术 材料科学与工程 环境科学与工程
本研究提出一种通过调控沸石结构和静电作用,实现微波选择性加热单个金属离子的催化剂设计策略。该方法显著提升了逆水煤气变换反应的能量利用效率,为微波驱动的多相催化体系提供了新框架。
标签: 单原子天线 微波催化 沸石 能量效率 逆水煤气变换
作者: aeks | 发布时间: 2025-10-11 12:27
学科: 信息与通信工程 材料科学与工程 物理学 电子科学与技术
本研究将高熵金属氧化物引入碳基手性框架,构建了HEMO@CNC复合材料。通过多尺度界面调控与自旋轨道耦合增强,实现了GHz频段超宽带电磁波吸收。手性结构与高熵效应协同诱导缺陷与自旋极化,显著提升介电-磁损耗性能。
标签: 手性结构 电磁波吸收 高熵金属氧化物
学科: 化学工程与技术 材料科学与工程 环境科学与工程 生物工程
受天然生物材料启发,研究人员开发出由细菌纤维素和芽孢杆菌孢子组成的“活体材料”。该材料中的孢子处于休眠状态,能抵抗恶劣环境,并在需要时被激活以执行传感、催化等功能,且通过基因改造可提升其性能。
标签: 按需功能 活体材料 生物复合材料 细菌纤维素 芽孢杆菌
作者: aeks | 发布时间: 2025-10-11 09:17
学科: 信息与通信工程 光学工程 材料科学与工程 电子科学与技术
本研究利用光的轨道角动量(OAM)实现非接触式、低功耗的多态光存储控制。OAM光在材料中产生纵向电场,显著提升陷阱态密度,从而精确调控读取电流、滞后窗口和电荷存储能力,为下一代高效能光学存储器件提供新路径。
标签: 二硫化钼 光存储 多态存储 轨道角动量 陷阱态
学科: 材料科学与工程 物理学 电子科学与技术 纳米科学与工程
本研究在保持整体空间反演对称性的块体金中,通过嵌入纳米尺度的银颗粒网络,成功诱导出显著增强的拉什巴自旋轨道耦合,耦合强度达15 meV·Å,为已知最高水平之一,并实现自旋散射率提升约20倍。
标签: 块体金属 拉什巴效应 纳米界面 自旋电子学 自旋轨道耦合
学科: 化学 材料科学与工程 物理学 纳米科学与工程
本文报道了一种利用等离激元能量转移(PIRET)在金纳米棒上合成等离激元-聚合物杂化纳米材料的新方法。通过原位单颗粒光谱电化学技术,实现了40%的能量转移效率,并揭示了该过程通过激发单线态氧促进N-去甲基化反应,从而形成聚合物的新机制。
标签: 光催化聚合 杂化纳米材料 等离激元能量转移
作者: aeks | 发布时间: 2025-10-11 02:46
学科: 化学工程与技术 材料科学与工程 生物医学工程 药学
研究发现,一种含甜菊苷和米诺地尔的可溶性贴片能有效促进毛囊进入生长期,显著改善脱发。甜菊苷可提升米诺地尔的皮肤吸收,为更安全高效的天然脱发治疗带来新希望。
标签: 毛囊 甜菊苷 米诺地尔 脱发治疗 透皮吸收