学科: 材料科学与工程

材料科学与工程是研究材料的结构、性能、制备、加工及应用的综合性学科,涵盖金属、陶瓷、高分子、复合材料等。通过调控材料成分与微观结构,优化其力学、电学、热学等性能,满足航空航天、电子信息、生物医疗等领域需求。结合物理、化学、工程等理论,推动新材料研发与技术创新,促进可持续发展。该学科注重基础研究与工程实践结合,是高新技术发展的核心支撑。(该学科下共有 371 篇文章)

一项“非常奇特”的量子发现打破了物理定律

作者: aeks | 发布时间: 2025-11-09 15:05

学科: 材料科学与工程 物理学 电子科学与技术 量子力学

一项“非常奇特”的量子发现打破了物理定律

密歇根大学李教授团队发现绝缘体中的量子振荡源于材料内部而非表面,这一“新二元性”发现(材料兼具导体与绝缘体特性)为量子物理研究带来新方向。

标签: 体内在效应 新二元性 硼化镱 绝缘体 量子振荡

MIT量子新突破:向室温超导迈进

作者: aeks | 发布时间: 2025-11-08 20:24

学科: 材料科学与工程 物理学 电子科学与技术 计算机科学与技术

MIT量子新突破:向室温超导迈进

传统超导体需极低温,而麻省理工学院研究人员在魔角扭曲三层石墨烯(MATTG)中发现非常规超导证据。他们测量到独特的超导能隙,机制异于传统材料,或为室温超导研究铺路。

标签: 扭曲电子学 超导能隙 非常规超导体 魔角扭曲三层石墨烯

会“变身”的智能纤维材料:磁场和外力一刺激,就能改变形状

作者: aeks | 发布时间: 2025-11-07 09:05

学科: 智能科学与技术 材料科学与工程 纺织科学与工程 轻工技术与工程

响应外部刺激的纤维材料在智能纺织品等领域潜力巨大,但现有标量刺激材料缺乏方向可控性。本研究开发出矢量磁响应磁流变纤维材料,其弯曲和刚度可通过磁场方向与强度调控,已制成主动通风面料、柔性抓取器和触觉手套,为智能纺织品创新开辟新路径。

标签: 智能纺织品 矢量刺激响应 磁流变纤维材料 磁驱动 触觉反馈

新型二维材料将空气变为燃料和肥料

作者: aeks | 发布时间: 2025-11-07 01:45

学科: 化学工程与技术 材料科学与工程 环境科学与工程 能源动力

新型二维材料将空气变为燃料和肥料

MXenes是一类能将空气中成分转化为氨(用于肥料和燃料)的低维化合物,其成分可调以精准控制性能。研究团队通过计算模拟和拉曼光谱揭示其晶格氮反应性等催化机制,旨在实现原子级控制,推动绿色化学与可再生能源发展。

标签: MXenes 晶格氮反应性 氨合成 电催化

把二氧化碳更快更便宜地变成清洁燃料

作者: aeks | 发布时间: 2025-11-06 23:15

学科: 动力工程及工程热物理 化学工程与技术 材料科学与工程 环境科学与工程

逆水煤气变换反应可将二氧化碳转化为一氧化碳,用于合成燃料,助力可持续能源。传统催化剂存在高温低效或低温副产物问题,新型铜基催化剂在400℃下效率高且稳定,为解决之道。

标签: 二氧化碳转化 合成燃料 层状双氢氧化物 逆水煤气变换反应 铜基催化剂

空间限域水合实现强效水下粘附

作者: aeks | 发布时间: 2025-11-06 21:28

学科: 化学工程与技术 材料科学与工程 环境科学与工程 生物医学工程

水下黏附长期受界面水制约,本研究提出空间限域水合黏胶带(CHAT),通过控制水渗透深度(<8微米),利用水合激活氢键形成强界面连接,同时疏水纳米域维持本体完整性。其界面韧性达6千焦/平方米,远超文献和商用胶带,且在极端条件(pH 1、13,3.5%盐水)下稳定,为海洋、生物医学和工业应用开辟新途径。

标签: 水下黏附 界面韧性 空间限域水合 超分子协同网络 黏胶带

可长期调节神经功能的通用型无创神经接口

作者: aeks | 发布时间: 2025-11-06 21:28

学科: 材料科学与工程 生物医学工程 电子科学与技术 神经科学

外周神经生物电子器件治疗疾病潜力大,但异物反应致纤维囊形成限制其效果。新生物黏附策略可在多种外周神经建立12周无纤维化界面,抑制免疫细胞浸润,在高血压大鼠中维持4周血压调节,实现持久无纤维化神经调控。

标签: 外周神经 无纤维化 生物电子界面 生物黏附

新型环保电池膜让储能更高效

作者: aeks | 发布时间: 2025-11-06 21:28

学科: 化学工程与技术 材料科学与工程 环境科学与工程 能源动力

多硫化物氧化还原液流电池是长时储能的潜力技术,但受多硫化物穿透和昂贵氟膜依赖限制。本研究开发的非氟磺化聚醚砜膜具有分散离子传输通道,离子选择性提高20倍,成本大幅降低,实现1600次稳定循环,推动商业化应用。

标签: 分散离子传输网络 多硫化物氧化还原液流电池 离子选择性 长时储能 非氟膜

用计算机找到并实验证实新型高效导光纳米材料

作者: aeks | 发布时间: 2025-11-06 21:28

学科: 光学工程 材料科学与工程 电子科学与技术 计算机科学与技术

高折射率介电材料能增强光学技术。本研究计算筛选百余种各向异性半导体,发现二硫化铪(HfS₂)在可见光范围内面内折射率超3且各向异性显著。经椭偏仪验证,通过控制存储或封装解决其空气敏感性,制备出米氏共振纳米盘,证实HfS₂是可见光光子学的潜力材料。

标签: 二硫化铪 米氏共振 范德华材料 高折射率材料

用计算机找到并实验证实新型高效导光纳米材料

作者: aeks | 发布时间: 2025-11-06 21:28

学科: 光学工程 材料科学与工程 电子科学与技术 计算机科学与技术

高折射率介电材料能增强光学技术。本研究计算筛选百余种各向异性半导体,发现二硫化铪(HfS₂)在可见光范围内面内折射率超3且各向异性显著。经椭偏仪验证,通过控制存储或封装解决其空气敏感性,制备出米氏共振纳米盘,证实HfS₂是可见光光子学的潜力材料。

标签: 米氏共振 范德华材料